
Function reference
-
agri.task - European Union Agricultural Workforces clustering task.
-
bc.task - Wisconsin Breast Cancer classification task.
-
bh.task - Boston Housing regression task.
-
costiris.task - Iris cost-sensitive classification task.
-
fuelsubset.task - FuelSubset functional data regression task.
-
gunpoint.task - Gunpoint functional data classification task.
-
iris.task - Iris classification task.
-
lung.task - NCCTG Lung Cancer survival task.
-
mtcars.task - Motor Trend Car Road Tests clustering task.
-
phoneme.task - Phoneme functional data multilabel classification task.
-
pid.task - PimaIndiansDiabetes classification task.
-
sonar.task - Sonar classification task.
-
spam.task - Spam classification task.
-
spatial.task - J. Muenchow's Ecuador landslide data set
-
wpbc.task - Wisonsin Prognostic Breast Cancer (WPBC) survival task.
-
yeast.task - Yeast multilabel classification task.
-
Task - Create a classification, regression, survival, cluster, cost-sensitive classification or multilabel task.
-
makeClassifTask() - Create a classification task.
-
makeClusterTask() - Create a cluster task.
-
makeCostSensTask() - Create a cost-sensitive classification task.
-
makeMultilabelTask() - Create a multilabel task.
-
makeRegrTask() - Create a regression task.
-
makeSurvTask() - Create a survival task.
-
convertMLBenchObjToTask() - Convert a machine learning benchmark / demo object from package mlbench to a task.
-
getFunctionalFeatures() - Get only functional features from a task or a data.frame.
-
listLearners() - Find matching learning algorithms.
-
listMeasures() - Find matching measures.
-
subsetTask() - Subset data in task.
-
TaskDesc - Description object for task.
-
listTaskTypes() - List the supported task types in mlr
-
train() - Train a learning algorithm.
-
trainLearner() - Train an R learner.
-
TuneControl - Control object for tuning
-
makeTuneMultiCritControlGrid()makeTuneMultiCritControlMBO()makeTuneMultiCritControlNSGA2()makeTuneMultiCritControlRandom() - Create control structures for multi-criteria tuning.
-
TuneMultiCritResult - Result of multi-criteria tuning.
-
TuneResult - Result of tuning.
-
makeTuneControlCMAES() - Create control object for hyperparameter tuning with CMAES.
-
makeTuneControlDesign() - Create control object for hyperparameter tuning with predefined design.
-
makeTuneControlGenSA() - Create control object for hyperparameter tuning with GenSA.
-
makeTuneControlGrid() - Create control object for hyperparameter tuning with grid search.
-
makeTuneControlIrace() - Create control object for hyperparameter tuning with Irace.
-
makeTuneControlMBO() - Create control object for hyperparameter tuning with MBO.
-
makeTuneControlRandom() - Create control object for hyperparameter tuning with random search.
-
tuneParams() - Hyperparameter tuning.
-
tuneParamsMultiCrit() - Hyperparameter tuning for multiple measures at once.
-
tuneThreshold() - Tune prediction threshold.
-
removeHyperPars() - Remove hyperparameters settings of a learner.
-
predict(<WrappedModel>) - Predict new data.
-
asROCRPrediction() - Converts predictions to a format package ROCR can handle.
-
predictLearner() - Predict new data with an R learner.
-
makeRLearner()makeRLearnerClassif()makeRLearnerMultilabel()makeRLearnerRegr()makeRLearnerSurv()makeRLearnerCluster()makeRLearnerCostSens() - Internal construction / wrapping of learner object.
-
listLearners() - Find matching learning algorithms.
-
learners - List of supported learning algorithms.
-
makeLearner() - Create learner object.
-
listLearnerProperties() - List the supported learner properties
-
makeLearners() - Create multiple learners at once.
-
learnerArgsToControl() - Convert arguments to control structure.
-
makeRLearner(<classif.fdausc.glm>) - Classification of functional data by Generalized Linear Models.
-
makeRLearner(<classif.fdausc.kernel>) - Learner for kernel classification for functional data.
-
makeRLearner(<classif.fdausc.np>) - Learner for nonparametric classification for functional data.
-
makeStackedLearner() - Create a stacked learner object.
-
resample()crossval()repcv()holdout()subsample()bootstrapOOB()bootstrapB632()bootstrapB632plus()growingcv()fixedcv() - Fit models according to a resampling strategy.
-
ResamplePrediction - Prediction from resampling.
-
ResampleResult - ResampleResult object.
-
makeCustomResampledMeasure() - Construct your own resampled performance measure.
-
makeResampleDesc() - Create a description object for a resampling strategy.
-
makeResampleInstance() - Instantiates a resampling strategy object.
-
makeFixedHoldoutInstance() - Generate a fixed holdout instance for resampling.
-
batchmark() - Run machine learning benchmarks as distributed experiments.
-
parallelization - Supported parallelization methods
-
createDummyFeatures() - Generate dummy variables for factor features.
-
downsample() - Downsample (subsample) a task or a data.frame.
-
dropFeatures() - Drop some features of task.
-
generateCalibrationData() - Generate classifier calibration data.
-
capLargeValues() - Convert large/infinite numeric values in a data.frame or task.
-
crossover - Crossover.
-
joinClassLevels() - Join some class existing levels to new, larger class levels for classification problems.
-
mergeSmallFactorLevels() - Merges small levels of factors into new level.
-
normalizeFeatures() - Normalize features.
-
oversample()undersample() - Over- or undersample binary classification task to handle class imbalancy.
-
removeConstantFeatures() - Remove constant features from a data set.
-
summarizeColumns() - Summarize columns of data.frame or task.
-
summarizeLevels() - Summarizes factors of a data.frame by tabling them.
-
smote() - Synthetic Minority Oversampling Technique to handle class imbalancy in binary classification.
-
benchmark() - Benchmark experiment for multiple learners and tasks.
-
BenchmarkResult - BenchmarkResult object.
-
makeModelMultiplexer() - Create model multiplexer for model selection to tune over multiple possible models.
-
makeModelMultiplexerParamSet() - Creates a parameter set for model multiplexer tuning.
-
mergeBenchmarkResults() - Merge different BenchmarkResult objects.
-
reduceBatchmarkResults() - Reduce results of a batch-distributed benchmark.
-
convertBMRToRankMatrix() - Convert BenchmarkResult to a rank-matrix.
-
friedmanPostHocTestBMR() - Perform a posthoc Friedman-Nemenyi test.
-
friedmanTestBMR() - Perform overall Friedman test for a BenchmarkResult.
-
getBMRAggrPerformances() - Extract the aggregated performance values from a benchmark result.
-
getBMRFeatSelResults() - Extract the feature selection results from a benchmark result.
-
getBMRFilteredFeatures() - Extract the feature selection results from a benchmark result.
-
getBMRLearnerIds() - Return learner ids used in benchmark.
-
getBMRLearnerShortNames() - Return learner short.names used in benchmark.
-
getBMRLearners() - Return learners used in benchmark.
-
getBMRMeasureIds() - Return measures IDs used in benchmark.
-
getBMRMeasures() - Return measures used in benchmark.
-
getBMRModels() - Extract all models from benchmark result.
-
getBMRPerformances() - Extract the test performance values from a benchmark result.
-
getBMRPredictions() - Extract the predictions from a benchmark result.
-
getBMRTaskDescriptions() - Extract all task descriptions from benchmark result (DEPRECATED).
-
getBMRTaskDescs() - Extract all task descriptions from benchmark result.
-
getBMRTaskIds() - Return task ids used in benchmark.
-
getBMRTuneResults() - Extract the tuning results from a benchmark result.
-
plotBMRBoxplots() - Create box or violin plots for a BenchmarkResult.
-
plotBMRRanksAsBarChart() - Create a bar chart for ranks in a BenchmarkResult.
-
plotBMRSummary() - Plot a benchmark summary.
-
makeFeatSelControlExhaustive()makeFeatSelControlGA()makeFeatSelControlRandom()makeFeatSelControlSequential() - Create control structures for feature selection.
-
FeatSelResult - Result of feature selection.
-
filterFeatures() - Filter features by thresholding filter values.
-
generateFilterValuesData() - Calculates feature filter values.
-
getBMRFilteredFeatures() - Extract the feature selection results from a benchmark result.
-
getFilteredFeatures() - Returns the filtered features.
-
listFilterEnsembleMethods() - List ensemble filter methods.
-
listFilterMethods() - List filter methods.
-
makeFilter() - Create a feature filter.
-
makeFilterEnsemble() - Create an ensemble feature filter.
-
makeFilterWrapper() - Fuse learner with a feature filter method.
-
plotFilterValues() - Plot filter values using ggplot2.
-
generateFeatureImportanceData() - Generate feature importance.
-
analyzeFeatSelResult() - Show and visualize the steps of feature selection.
-
selectFeatures() - Feature selection by wrapper approach.
-
calculateConfusionMatrix()print(<ConfusionMatrix>) - Confusion matrix.
-
estimateRelativeOverfitting() - Estimate relative overfitting.
-
estimateResidualVariance() - Estimate the residual variance.
-
generateHyperParsEffectData() - Generate hyperparameter effect data.
-
generateLearningCurveData() - Generates a learning curve.
-
generatePartialDependenceData() - Generate partial dependence.
-
generateThreshVsPerfData() - Generate threshold vs. performance(s) for 2-class classification.
-
generateCritDifferencesData() - Generate data for critical-differences plot.
-
performance() - Measure performance of prediction.
-
measureSSE()measureMSE()measureRMSE()measureMEDSE()measureSAE()measureMAE()measureMEDAE()measureRSQ()measureEXPVAR()measureRRSE()measureRAE()measureMAPE()measureMSLE()measureRMSLE()measureKendallTau()measureSpearmanRho()measureMMCE()measureACC()measureBER()measureAUNU()measureAUNP()measureAU1U()measureAU1P()measureMulticlassBrier()measureLogloss()measureSSR()measureQSR()measureLSR()measureKAPPA()measureWKAPPA()measureAUC()measureBrier()measureBrierScaled()measureBAC()measureTP()measureTN()measureFP()measureFN()measureTPR()measureTNR()measureFPR()measureFNR()measurePPV()measureNPV()measureFDR()measureMCC()measureF1()measureGMEAN()measureGPR()measureMultilabelHamloss()measureMultilabelSubset01()measureMultilabelF1()measureMultilabelACC()measureMultilabelPPV()measureMultilabelTPR() - Performance measures.
-
Aggregation - Aggregation object.
-
ConfusionMatrix - Confusion matrix
-
addRRMeasure() - Compute new measures for existing ResampleResult
-
aggregationstest.meantest.sdtest.mediantest.mintest.maxtest.sumtest.rangetest.rmsetrain.meantrain.sdtrain.mediantrain.mintrain.maxtrain.sumtrain.rangetrain.rmseb632b632plustestgroup.meantestgroup.sdtest.join - Aggregation methods.
-
calculateROCMeasures()print(<ROCMeasures>) - Calculate receiver operator measures.
-
makeAggregation() - Specify your own aggregation of measures.
-
makeMeasure() - Construct performance measure.
-
makeCostMeasure() - Creates a measure for non-standard misclassification costs.
-
listMeasureProperties() - List the supported measure properties.
-
setAggregation() - Set aggregation function of measure.
-
simplifyMeasureNames() - Simplify measure names.
-
imputeConstant()imputeMedian()imputeMean()imputeMode()imputeMin()imputeMax()imputeUniform()imputeNormal()imputeHist()imputeLearner() - Built-in imputation methods.
-
impute() - Impute and re-impute data
-
makeImputeMethod() - Create a custom imputation method.
-
reimpute() - Re-impute a data set
-
createSpatialResamplingPlots() - Create (spatial) resampling plot objects.
-
extractFDABsignal() - Bspline mlq features
-
extractFDADTWKernel() - DTW kernel features
-
extractFDAFPCA() - Extract functional principal component analysis features.
-
extractFDAFeatures() - Extract features from functional data.
-
extractFDAFourier() - Fast Fourier transform features.
-
extractFDAMultiResFeatures() - Multiresolution feature extraction.
-
extractFDATsfeatures() - Time-Series Feature Heuristics
-
extractFDAWavelets() - Discrete Wavelet transform features.
-
makeExtractFDAFeatMethod() - Constructor for FDA feature extraction methods.
-
makeExtractFDAFeatsWrapper() - Fuse learner with an extractFDAFeatures method.
-
reextractFDAFeatures() - Re-extract features from a data set
-
getFunctionalFeatures() - Get only functional features from a task or a data.frame.
-
hasFunctionalFeatures() - Check whether the object contains functional features.
-
makeFunctionalData() - Create a data.frame containing functional features from a normal data.frame.
-
configureMlr() - Configures the behavior of the package.
-
mlrmlr-package - mlr: Machine Learning in R
-
mlrFamilies - mlr documentation families
-
getMlrOptions() - Returns a list of mlr's options.
-
plotBMRBoxplots() - Create box or violin plots for a BenchmarkResult.
-
plotBMRRanksAsBarChart() - Create a bar chart for ranks in a BenchmarkResult.
-
plotBMRSummary() - Plot a benchmark summary.
-
plotCalibration() - Plot calibration data using ggplot2.
-
plotCritDifferences() - Plot critical differences for a selected measure.
-
plotFilterValues() - Plot filter values using ggplot2.
-
plotHyperParsEffect() - Plot the hyperparameter effects data
-
plotLearnerPrediction() - Visualizes a learning algorithm on a 1D or 2D data set.
-
plotLearningCurve() - Plot learning curve data using ggplot2.
-
plotPartialDependence() - Plot a partial dependence with ggplot2.
-
plotROCCurves() - Plots a ROC curve using ggplot2.
-
plotResiduals() - Create residual plots for prediction objects or benchmark results.
-
plotThreshVsPerf() - Plot threshold vs. performance(s) for 2-class classification using ggplot2.
-
plotTuneMultiCritResult() - Plots multi-criteria results after tuning using ggplot2.
-
makeCostSensTask() - Create a cost-sensitive classification task.
-
makeCostSensClassifWrapper() - Wraps a classification learner for use in cost-sensitive learning.
-
makeCostSensRegrWrapper() - Wraps a regression learner for use in cost-sensitive learning.
-
makeCostSensWeightedPairsWrapper() - Wraps a classifier for cost-sensitive learning to produce a weighted pairs model.
-
extractFDABsignal() - Bspline mlq features
-
extractFDADTWKernel() - DTW kernel features
-
extractFDAFPCA() - Extract functional principal component analysis features.
-
extractFDAFeatures() - Extract features from functional data.
-
extractFDAFourier() - Fast Fourier transform features.
-
extractFDAMultiResFeatures() - Multiresolution feature extraction.
-
extractFDATsfeatures() - Time-Series Feature Heuristics
-
extractFDAWavelets() - Discrete Wavelet transform features.
-
getCacheDir()deleteCacheDir() - Get or delete mlr cache directory
-
helpLearner() - Access help page of learner functions.
-
helpLearnerParam() - Get specific help for a learner's parameters.
-
FailureModel - Failure model.
-
hasProperties() - Deprecated, use
hasLearnerPropertiesinstead.
-
isFailureModel() - Is the model a FailureModel?
-
makeBaggingWrapper() - Fuse learner with the bagging technique.
-
makeClassificationViaRegressionWrapper() - Classification via regression wrapper.
-
makeConstantClassWrapper() - Wraps a classification learner to support problems where the class label is (almost) constant.
-
makeCostSensClassifWrapper() - Wraps a classification learner for use in cost-sensitive learning.
-
makeCostSensRegrWrapper() - Wraps a regression learner for use in cost-sensitive learning.
-
makeCostSensWeightedPairsWrapper() - Wraps a classifier for cost-sensitive learning to produce a weighted pairs model.
-
makeDownsampleWrapper() - Fuse learner with simple downsampling (subsampling).
-
makeDummyFeaturesWrapper() - Fuse learner with dummy feature creator.
-
makeExtractFDAFeatsWrapper() - Fuse learner with an extractFDAFeatures method.
-
makeFeatSelWrapper() - Fuse learner with feature selection.
-
makeFilterWrapper() - Fuse learner with a feature filter method.
-
makeImputeWrapper() - Fuse learner with an imputation method.
-
makeMulticlassWrapper() - Fuse learner with multiclass method.
-
makeMultilabelBinaryRelevanceWrapper() - Use binary relevance method to create a multilabel learner.
-
makeMultilabelClassifierChainsWrapper() - Use classifier chains method (CC) to create a multilabel learner.
-
makeMultilabelDBRWrapper() - Use dependent binary relevance method (DBR) to create a multilabel learner.
-
makeMultilabelNestedStackingWrapper() - Use nested stacking method to create a multilabel learner.
-
makeMultilabelStackingWrapper() - Use stacking method (stacked generalization) to create a multilabel learner.
-
makeOverBaggingWrapper() - Fuse learner with the bagging technique and oversampling for imbalancy correction.
-
makePreprocWrapper() - Fuse learner with preprocessing.
-
makePreprocWrapperCaret() - Fuse learner with preprocessing.
-
makeRemoveConstantFeaturesWrapper() - Fuse learner with removal of constant features preprocessing.
-
makeSMOTEWrapper() - Fuse learner with SMOTE oversampling for imbalancy correction in binary classification.
-
makeTuneWrapper() - Fuse learner with tuning.
-
makeUndersampleWrapper()makeOversampleWrapper() - Fuse learner with simple ove/underrsampling for imbalancy correction in binary classification.
-
makeWeightedClassesWrapper() - Wraps a classifier for weighted fitting where each class receives a weight.
-
makeWrappedModel() - Induced model of learner.
-
getLearnerProperties()hasLearnerProperties() - Query properties of learners.
-
getMeasureProperties()hasMeasureProperties() - Query properties of measures.
-
getCacheDir()deleteCacheDir() - Get or delete mlr cache directory
-
getBMRAggrPerformances() - Extract the aggregated performance values from a benchmark result.
-
getBMRFeatSelResults() - Extract the feature selection results from a benchmark result.
-
getBMRFilteredFeatures() - Extract the feature selection results from a benchmark result.
-
getBMRLearnerIds() - Return learner ids used in benchmark.
-
getBMRLearnerShortNames() - Return learner short.names used in benchmark.
-
getBMRLearners() - Return learners used in benchmark.
-
getBMRMeasureIds() - Return measures IDs used in benchmark.
-
getBMRMeasures() - Return measures used in benchmark.
-
getBMRModels() - Extract all models from benchmark result.
-
getBMRPerformances() - Extract the test performance values from a benchmark result.
-
getBMRPredictions() - Extract the predictions from a benchmark result.
-
getBMRTaskDescriptions() - Extract all task descriptions from benchmark result (DEPRECATED).
-
getBMRTaskDescs() - Extract all task descriptions from benchmark result.
-
getBMRTaskIds() - Return task ids used in benchmark.
-
getBMRTuneResults() - Extract the tuning results from a benchmark result.
-
getCaretParamSet() - Get tuning parameters from a learner of the caret R-package.
-
getClassWeightParam() - Get the class weight parameter of a learner.
-
getConfMatrix() - Confusion matrix.
-
getDefaultMeasure() - Get default measure.
-
getFailureModelDump() - Return the error dump of FailureModel.
-
getFailureModelMsg() - Return error message of FailureModel.
-
getFeatSelResult() - Returns the selected feature set and optimization path after training.
-
getFeatureImportance() - Calculates feature importance values for trained models.
-
getFilteredFeatures() - Returns the filtered features.
-
getFunctionalFeatures() - Get only functional features from a task or a data.frame.
-
getHomogeneousEnsembleModels() - Deprecated, use
getLearnerModelinstead.
-
getHyperPars() - Get current parameter settings for a learner.
-
getLearnerId() - Get the ID of the learner.
-
getLearnerModel() - Get underlying R model of learner integrated into mlr.
-
getLearnerNote() - Get the note for the learner.
-
getLearnerPackages() - Get the required R packages of the learner.
-
getLearnerParVals() - Get the parameter values of the learner.
-
getLearnerParamSet() - Get the parameter set of the learner.
-
getLearnerPredictType() - Get the predict type of the learner.
-
getLearnerShortName() - Get the short name of the learner.
-
getLearnerType() - Get the type of the learner.
-
getMlrOptions() - Returns a list of mlr's options.
-
getMultilabelBinaryPerformances() - Retrieve binary classification measures for multilabel classification predictions.
-
getNestedTuneResultsOptPathDf() - Get the
opt.paths from each tuning step from the outer resampling.
-
getNestedTuneResultsX() - Get the tuned hyperparameter settings from a nested tuning.
-
getOOBPreds() - Extracts out-of-bag predictions from trained models.
-
getParamSet - Get a description of all possible parameter settings for a learner.
-
getPredictionDump() - Return the error dump of a failed Prediction.
-
getPredictionProbabilities() - Get probabilities for some classes.
-
getPredictionResponse()getPredictionSE()getPredictionTruth() - Get response / truth from prediction object.
-
getPredictionTaskDesc() - Get summarizing task description from prediction.
-
getProbabilities() - Deprecated, use
getPredictionProbabilitiesinstead.
-
getRRDump() - Return the error dump of ResampleResult.
-
getRRPredictionList() - Get list of predictions for train and test set of each single resample iteration.
-
getRRPredictions() - Get predictions from resample results.
-
getRRTaskDesc() - Get task description from resample results (DEPRECATED).
-
getRRTaskDescription() - Get task description from resample results (DEPRECATED).
-
getResamplingIndices() - Get the resampling indices from a tuning or feature selection wrapper..
-
getStackedBaseLearnerPredictions() - Returns the predictions for each base learner.
-
getTaskClassLevels() - Get the class levels for classification and multilabel tasks.
-
getTaskCosts() - Extract costs in task.
-
getTaskData() - Extract data in task.
-
getTaskDesc() - Get a summarizing task description.
-
getTaskDescription() - Deprecated, use getTaskDesc instead.
-
getTaskFeatureNames() - Get feature names of task.
-
getTaskFormula() - Get formula of a task.
-
getTaskId() - Get the id of the task.
-
getTaskNFeats() - Get number of features in task.
-
getTaskSize() - Get number of observations in task.
-
getTaskTargetNames() - Get the name(s) of the target column(s).
-
getTaskTargets() - Get target data of task.
-
getTaskType() - Get the type of the task.
-
getTuneResult() - Returns the optimal hyperparameters and optimization path after training.
-
getTuneResultOptPath() - Get the optimization path of a tuning result.
-
setAggregation() - Set aggregation function of measure.
-
setHyperPars() - Set the hyperparameters of a learner object.
-
setHyperPars2() - Only exported for internal use.
-
setId() - Set the id of a learner object.
-
setLearnerId() - Set the ID of a learner object.
-
setMeasurePars() - Set parameters of performance measures
-
setPredictThreshold() - Set the probability threshold the learner should use.
-
setPredictType() - Set the type of predictions the learner should return.
-
setThreshold() - Set threshold of prediction object.