
Classification via regression wrapper.
Source:R/ClassificationViaRegressionWrapper.R
      makeClassificationViaRegressionWrapper.RdBuilds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).
Probabilities are generated by transforming the predictions with a softmax.
Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).
Arguments
- learner
- (Learner | - character(1))
 The learner. If you pass a string the learner will be created via makeLearner.
- predict.type
- ( - character(1))
 “response” (= labels) or “prob” (= probabilities and labels by selecting the one with maximal probability).
See also
Other wrapper: 
makeBaggingWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeImputeWrapper(),
makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapperCaret(),
makePreprocWrapper(),
makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()
Examples
lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
#> Error in x[0, , drop = FALSE]: incorrect number of dimensions
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])
#> Error in predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60]): object 'mod' not found