Classification via regression wrapper.
Source:R/ClassificationViaRegressionWrapper.R
makeClassificationViaRegressionWrapper.Rd
Builds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).
Probabilities are generated by transforming the predictions with a softmax.
Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).
Arguments
- learner
(Learner |
character(1)
)
The learner. If you pass a string the learner will be created via makeLearner.- predict.type
(
character(1)
)
“response” (= labels) or “prob” (= probabilities and labels by selecting the one with maximal probability).
See also
Other wrapper:
makeBaggingWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapperCaret()
,
makePreprocWrapper()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()
Examples
lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
#> Error in x[0, , drop = FALSE]: incorrect number of dimensions
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])
#> Error in predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60]): object 'mod' not found