Fuse learner with removal of constant features preprocessing.
Source:R/RemoveConstantFeaturesWrapper.R
makeRemoveConstantFeaturesWrapper.Rd
Fuses a base learner with the preprocessing implemented in removeConstantFeatures.
Usage
makeRemoveConstantFeaturesWrapper(
learner,
perc = 0,
dont.rm = character(0L),
na.ignore = FALSE,
wrap.tol = .Machine$double.eps^0.5
)
Arguments
- learner
(Learner |
character(1)
)
The learner. If you pass a string the learner will be created via makeLearner.- perc
(
numeric(1)
)
The percentage of a feature values in [0, 1) that must differ from the mode value. Default is 0, which means only constant features with exactly one observed level are removed.- dont.rm
(character)
Names of the columns which must not be deleted. Default is no columns.- na.ignore
(
logical(1)
)
Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default isFALSE
.- wrap.tol
(
numeric(1)
)
Numerical tolerance to treat two numbers as equal. Variables stored asdouble
will get rounded accordingly before computing the mode. Default issqrt(.Maschine$double.eps)
.
See also
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapperCaret()
,
makePreprocWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()