
Fuse learner with removal of constant features preprocessing.
Source:R/RemoveConstantFeaturesWrapper.R
makeRemoveConstantFeaturesWrapper.RdFuses a base learner with the preprocessing implemented in removeConstantFeatures.
Usage
makeRemoveConstantFeaturesWrapper(
learner,
perc = 0,
dont.rm = character(0L),
na.ignore = FALSE,
wrap.tol = .Machine$double.eps^0.5
)Arguments
- learner
(Learner |
character(1))
The learner. If you pass a string the learner will be created via makeLearner.- perc
(
numeric(1))
The percentage of a feature values in [0, 1) that must differ from the mode value. Default is 0, which means only constant features with exactly one observed level are removed.- dont.rm
(character)
Names of the columns which must not be deleted. Default is no columns.- na.ignore
(
logical(1))
Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default isFALSE.- wrap.tol
(
numeric(1))
Numerical tolerance to treat two numbers as equal. Variables stored asdoublewill get rounded accordingly before computing the mode. Default issqrt(.Maschine$double.eps).
See also
Other wrapper:
makeBaggingWrapper(),
makeClassificationViaRegressionWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeImputeWrapper(),
makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapperCaret(),
makePreprocWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()