Given a Task, creates a model for the learning machine which can be used for predictions on new data.
Arguments
- learner
(Learner |
character(1))
The learner. If you pass a string the learner will be created via makeLearner.- task
(Task)
The task.- subset
(integer | logical |
NULL)
Selected cases. Either a logical or an index vector. By defaultNULLif all observations are used.- weights
(numeric)
Optional, non-negative case weight vector to be used during fitting. If given, must be of same length assubsetand in corresponding order. By defaultNULLwhich means no weights are used unless specified in the task (Task). Weights from the task will be overwritten.
Value
(WrappedModel).
Examples
training.set = sample(seq_len(nrow(iris)), nrow(iris) / 2)
## use linear discriminant analysis to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.lda", method = "mle")
mod = train(learner, task, subset = training.set)
#> Error in x[0, , drop = FALSE]: incorrect number of dimensions
print(mod)
#> Error in print(mod): object 'mod' not found
## use random forest to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.rpart", minsplit = 7, predict.type = "prob")
mod = train(learner, task, subset = training.set)
#> Error in x[0, , drop = FALSE]: incorrect number of dimensions
print(mod)
#> Error in print(mod): object 'mod' not found
