Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one of ggplot2's transformations like ggplot2::scale_x_log10.
Usage
plotBMRSummary(
bmr,
measure = NULL,
trafo = "none",
order.tsks = NULL,
pointsize = 4L,
jitter = 0.05,
pretty.names = TRUE
)Arguments
- bmr
(BenchmarkResult)
Benchmark result.- measure
(Measure)
Performance measure. Default is the first measure used in the benchmark experiment.- trafo
(
character(1))
Currently either “none” or “rank”, the latter performing a rank transformation (with average handling of ties) of the scores per task. NB: You can add always add ggplot2::scale_x_log10 to the result to put scores on a log scale. Default is “none”.- order.tsks
(
character(n.tasks))
Character vector withtask.idsin new order.- pointsize
(
numeric(1))
Point size for ggplot2 ggplot2::geom_point for data points. Default is 4.- jitter
(
numeric(1))
Small vertical jitter to deal with overplotting in case of equal scores. Default is 0.05.- pretty.names
(
logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults toTRUE.
See also
Other benchmark:
BenchmarkResult,
batchmark(),
benchmark(),
convertBMRToRankMatrix(),
friedmanPostHocTestBMR(),
friedmanTestBMR(),
generateCritDifferencesData(),
getBMRAggrPerformances(),
getBMRFeatSelResults(),
getBMRFilteredFeatures(),
getBMRLearnerIds(),
getBMRLearnerShortNames(),
getBMRLearners(),
getBMRMeasureIds(),
getBMRMeasures(),
getBMRModels(),
getBMRPerformances(),
getBMRPredictions(),
getBMRTaskDescs(),
getBMRTaskIds(),
getBMRTuneResults(),
plotBMRBoxplots(),
plotBMRRanksAsBarChart(),
plotCritDifferences(),
reduceBatchmarkResults()
Other plot:
createSpatialResamplingPlots(),
plotBMRBoxplots(),
plotBMRRanksAsBarChart(),
plotCalibration(),
plotCritDifferences(),
plotLearningCurve(),
plotPartialDependence(),
plotROCCurves(),
plotResiduals(),
plotThreshVsPerf()
