Plots calibration data from generateCalibrationData.
Usage
plotCalibration(
  obj,
  smooth = FALSE,
  reference = TRUE,
  rag = TRUE,
  facet.wrap.nrow = NULL,
  facet.wrap.ncol = NULL
)Arguments
- obj
- (CalibrationData) 
 Result of generateCalibrationData.
- smooth
- ( - logical(1))
 Whether to use a loess smoother. Default is- FALSE.
- reference
- ( - logical(1))
 Whether to plot a reference line showing perfect calibration. Default is- TRUE.
- rag
- ( - logical(1))
 Whether to include a rag plot which shows a rug plot on the top which pertains to positive cases and on the bottom which pertains to negative cases. Default is- TRUE.
- facet.wrap.nrow, facet.wrap.ncol
- (integer) 
 Number of rows and columns for facetting. Default for both is- NULL. In this case ggplot's- facet_wrapwill choose the layout itself.
See also
Other plot: 
createSpatialResamplingPlots(),
plotBMRBoxplots(),
plotBMRRanksAsBarChart(),
plotBMRSummary(),
plotCritDifferences(),
plotLearningCurve(),
plotPartialDependence(),
plotROCCurves(),
plotResiduals(),
plotThreshVsPerf()
Other calibration: 
generateCalibrationData()
Examples
if (FALSE) {
lrns = list(makeLearner("classif.rpart", predict.type = "prob"),
  makeLearner("classif.nnet", predict.type = "prob"))
fit = lapply(lrns, train, task = iris.task)
pred = lapply(fit, predict, task = iris.task)
names(pred) = c("rpart", "nnet")
out = generateCalibrationData(pred, groups = 3)
plotCalibration(out)
fit = lapply(lrns, train, task = sonar.task)
pred = lapply(fit, predict, task = sonar.task)
names(pred) = c("rpart", "lda")
out = generateCalibrationData(pred)
plotCalibration(out)
}
