
Create residual plots for prediction objects or benchmark results.
Source:R/plotResiduals.R
plotResiduals.RdPlots for model diagnostics. Provides scatterplots of true vs. predicted values and histograms of the model's residuals.
Usage
plotResiduals(
obj,
type = "scatterplot",
loess.smooth = TRUE,
rug = TRUE,
pretty.names = TRUE
)Arguments
- obj
(Prediction | BenchmarkResult)
Input data.- type
Type of plot. Can be “scatterplot”, the default. Or “hist”, for a histogram, or in case of classification problems a barplot, displaying the residuals.
- loess.smooth
(
logical(1))
Should a loess smoother be added to the plot? Defaults toTRUE. Only applicable for regression tasks and iftypeis set toscatterplot.- rug
(
logical(1))
Should marginal distributions be added to the plot? Defaults toTRUE. Only applicable for regression tasks and iftypeis set toscatterplot.- pretty.names
(
logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults toTRUE.
Only applicable if a BenchmarkResult is passed toobjin the function call, ignored otherwise.
See also
Other plot:
createSpatialResamplingPlots(),
plotBMRBoxplots(),
plotBMRRanksAsBarChart(),
plotBMRSummary(),
plotCalibration(),
plotCritDifferences(),
plotLearningCurve(),
plotPartialDependence(),
plotROCCurves(),
plotThreshVsPerf()