The built-ins are:
imputeConstant(const)for imputation using a constant value,imputeMedian()for imputation using the median,imputeMode()for imputation using the mode,imputeMin(multiplier)for imputing constant values shifted below the minimum usingmin(x) - multiplier * diff(range(x)),imputeMax(multiplier)for imputing constant values shifted above the maximum usingmax(x) + multiplier * diff(range(x)),imputeNormal(mean, sd)for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided.imputeHist(breaks, use.mids)for imputation using random values with probabilities calculated usingtableorhist.imputeLearner(learner, features = NULL)for imputations using the response of a classification or regression learner.
Usage
imputeConstant(const)
imputeMedian()
imputeMean()
imputeMode()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)
imputeUniform(min = NA_real_, max = NA_real_)
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)Arguments
- const
(any)
Constant valued use for imputation.- multiplier
(
numeric(1))
Value that stored minimum or maximum is multiplied with when imputation is done.- min
(
numeric(1))
Lower bound for uniform distribution. If NA (default), it will be estimated from the data.- max
(
numeric(1))
Upper bound for uniform distribution. If NA (default), it will be estimated from the data.- mu
(
numeric(1))
Mean of normal distribution. If missing it will be estimated from the data.- sd
(
numeric(1))
Standard deviation of normal distribution. If missing it will be estimated from the data.- breaks
(
numeric(1))
Number of breaks to use in graphics::hist. If missing, defaults to auto-detection via “Sturges”.- use.mids
(
logical(1))
Ifxis numeric and a histogram is used, impute with bin mids (default) or instead draw uniformly distributed samples within bin range.- learner
(Learner |
character(1))
Supervised learner. Its predictions will be used for imputations. If you pass a string the learner will be created via makeLearner. Note that the target column is not available for this operation.- features
(character)
Features to use inlearnerfor prediction. Default isNULLwhich uses all available features except the target column of the original task.
See also
Other impute:
impute(),
makeImputeMethod(),
makeImputeWrapper(),
reimpute()
