Optimizes the threshold of predictions based on probabilities. Works for classification and multilabel tasks. Uses BBmisc::optimizeSubInts for normal binary class problems and GenSA::GenSA for multiclass and multilabel problems.
Usage
tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())
Arguments
- pred
(Prediction)
Prediction object.- measure
(Measure)
Performance measure to optimize. Default is the default measure for the task.- task
(Task)
Learning task. Rarely neeeded, only when required for the performance measure.- model
(WrappedModel)
Fitted model. Rarely neeeded, only when required for the performance measure.- nsub
(
integer(1)
)
Passed to BBmisc::optimizeSubInts for 2class problems. Default is 20.- control
(list)
Control object for GenSA::GenSA when used. Default is empty list.
Value
(list). A named list with with the following components:
th
is the optimal threshold, perf
the performance value.
See also
Other tune:
TuneControl
,
getNestedTuneResultsOptPathDf()
,
getNestedTuneResultsX()
,
getResamplingIndices()
,
getTuneResult()
,
makeModelMultiplexerParamSet()
,
makeModelMultiplexer()
,
makeTuneControlCMAES()
,
makeTuneControlDesign()
,
makeTuneControlGenSA()
,
makeTuneControlGrid()
,
makeTuneControlIrace()
,
makeTuneControlMBO()
,
makeTuneControlRandom()
,
makeTuneWrapper()
,
tuneParams()