Calculate the absolute number of correct/incorrect classifications and the following evaluation measures:
tprTrue positive rate (Sensitivity, Recall)fprFalse positive rate (Fall-out)fnrFalse negative rate (Miss rate)tnrTrue negative rate (Specificity)ppvPositive predictive value (Precision)forFalse omission ratelrpPositive likelihood ratio (LR+)fdrFalse discovery ratenpvNegative predictive valueaccAccuracylrmNegative likelihood ratio (LR-)dorDiagnostic odds ratio
For details on the used measures see measures and also https://en.wikipedia.org/wiki/Receiver_operating_characteristic.
The element for the false omission rate in the resulting object is not called for but
fomr since for should never be used as a variable name in an object.
Usage
calculateROCMeasures(pred)
# S3 method for ROCMeasures
print(x, abbreviations = TRUE, digits = 2, ...)Arguments
- pred
(Prediction)
Prediction object.- x
(
ROCMeasures)
Created by calculateROCMeasures.- abbreviations
(
logical(1))
IfTRUEa short paragraph with explanations of the used measures is printed additionally.- digits
(
integer(1))
Number of digits the measures are rounded to.- ...
(any)
Currently not used.
Value
(ROCMeasures).
A list containing two elements confusion.matrix which is
the 2 times 2 confusion matrix of absolute frequencies and measures, a list of the above mentioned measures.
See also
Other roc:
asROCRPrediction()
Other performance:
ConfusionMatrix,
calculateConfusionMatrix(),
estimateRelativeOverfitting(),
makeCostMeasure(),
makeCustomResampledMeasure(),
makeMeasure(),
measures,
performance(),
setAggregation(),
setMeasurePars()
Examples
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)
#> predicted
#> true M R
#> M 95 16 tpr: 0.86 fnr: 0.14
#> R 10 87 fpr: 0.1 tnr: 0.9
#> ppv: 0.9 for: 0.16 lrp: 8.3 acc: 0.88
#> fdr: 0.1 npv: 0.84 lrm: 0.16 dor: 51.66
#>
#>
#> Abbreviations:
#> tpr - True positive rate (Sensitivity, Recall)
#> fpr - False positive rate (Fall-out)
#> fnr - False negative rate (Miss rate)
#> tnr - True negative rate (Specificity)
#> ppv - Positive predictive value (Precision)
#> for - False omission rate
#> lrp - Positive likelihood ratio (LR+)
#> fdr - False discovery rate
#> npv - Negative predictive value
#> acc - Accuracy
#> lrm - Negative likelihood ratio (LR-)
#> dor - Diagnostic odds ratio
