Calculates numerical filter values for features. For a list of features, use listFilterMethods.
Usage
generateFilterValuesData(
  task,
  method = "FSelectorRcpp_information.gain",
  nselect = getTaskNFeats(task),
  ...,
  more.args = list()
)Arguments
- task
- (Task) 
 The task.
- method
- (character | list) 
 Filter method(s). In case of ensemble filters the- listnotation needs to be used. See the examples for more information. Default is “FSelectorRcpp_information.gain”.
- nselect
- ( - integer(1))
 Number of scores to request. Scores are getting calculated for all features per default.
- ...
- (any) 
 Passed down to selected method. Can only be use if- methodcontains one element.
- more.args
- (named list) 
 Extra args passed down to filter methods. List elements are named with the filter- methodname the args should be passed down to. A more general and flexible option than- .... Default is empty list.
Simple and ensemble filters
Besides passing (multiple) simple filter methods you can also pass an
ensemble filter method (in a list). The ensemble method will use the simple
methods to calculate its ranking. See listFilterEnsembleMethods() for
available ensemble methods.
See also
Other generate_plot_data: 
generateCalibrationData(),
generateCritDifferencesData(),
generateFeatureImportanceData(),
generateLearningCurveData(),
generatePartialDependenceData(),
generateThreshVsPerfData(),
plotFilterValues()
Other filter: 
filterFeatures(),
getFilteredFeatures(),
listFilterEnsembleMethods(),
listFilterMethods(),
makeFilterEnsemble(),
makeFilterWrapper(),
makeFilter(),
plotFilterValues()
Examples
# two simple filter methods
fval = generateFilterValuesData(iris.task,
  method = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain"))
# using ensemble method "E-mean"
fval = generateFilterValuesData(iris.task,
  method = list("E-mean", c("FSelectorRcpp_gain.ratio",
    "FSelectorRcpp_information.gain")))
