Possible prediction types are: Classification: Labels or class probabilities (including labels). Regression: Numeric or response or standard errors (including numeric response). Survival: Linear predictor or survival probability.
For complex wrappers the predict type is usually also passed down the encapsulated learner in a recursive fashion.
Arguments
- learner
(Learner |
character(1)
)
The learner. If you pass a string the learner will be created via makeLearner.- predict.type
(
character(1)
)
Classification: “response” or “prob”. Regression: “response” or “se”. Survival: “response” (linear predictor) or “prob”. Clustering: “response” or “prob”. Default is “response”.
See also
Other predict:
asROCRPrediction()
,
getPredictionProbabilities()
,
getPredictionResponse()
,
getPredictionTaskDesc()
,
predict.WrappedModel()
,
setPredictThreshold()
Other learner:
LearnerProperties
,
getClassWeightParam()
,
getHyperPars()
,
getLearnerId()
,
getLearnerNote()
,
getLearnerPackages()
,
getLearnerParVals()
,
getLearnerParamSet()
,
getLearnerPredictType()
,
getLearnerShortName()
,
getLearnerType()
,
getParamSet()
,
helpLearnerParam()
,
helpLearner()
,
makeLearners()
,
makeLearner()
,
removeHyperPars()
,
setHyperPars()
,
setId()
,
setLearnerId()
,
setPredictThreshold()