Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one of ggplot2's transformations like ggplot2::scale_x_log10.
plotBMRSummary( bmr, measure = NULL, trafo = "none", order.tsks = NULL, pointsize = 4L, jitter = 0.05, pretty.names = TRUE )
bmr | (BenchmarkResult) |
---|---|
measure | (Measure) |
trafo | ( |
order.tsks | ( |
pointsize | ( |
jitter | ( |
pretty.names | ( |
ggplot2 plot object.
Other benchmark:
BenchmarkResult
,
batchmark()
,
benchmark()
,
convertBMRToRankMatrix()
,
friedmanPostHocTestBMR()
,
friedmanTestBMR()
,
generateCritDifferencesData()
,
getBMRAggrPerformances()
,
getBMRFeatSelResults()
,
getBMRFilteredFeatures()
,
getBMRLearnerIds()
,
getBMRLearnerShortNames()
,
getBMRLearners()
,
getBMRMeasureIds()
,
getBMRMeasures()
,
getBMRModels()
,
getBMRPerformances()
,
getBMRPredictions()
,
getBMRTaskDescs()
,
getBMRTaskIds()
,
getBMRTuneResults()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotCritDifferences()
,
reduceBatchmarkResults()
Other plot:
createSpatialResamplingPlots()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotCalibration()
,
plotCritDifferences()
,
plotLearningCurve()
,
plotPartialDependence()
,
plotROCCurves()
,
plotResiduals()
,
plotThreshVsPerf()
# see benchmark