mlr-org mlr v2.19.0
  • Basics
    • Task
    • Learner
    • Train
    • Predict
    • Preprocessing
    • Tuning
    • Resampling
    • Benchmarking
    • Parallelization
    • Performance
    • Visualization
    • Use case - Regression
  • Advanced
    • mlr Configuration
    • Wrapped Learners
    • Imputation
    • Generic Bagging
    • Advanced Tuning
    • Feature Selection/Filtering
    • Nested Resampling
    • Imbalanced Classification Problems
    • ROC Analysis and Performance Curves
    • Learning Curve Analysis
    • Partial Dependence Plots
    • Classifier Calibration
    • Hyperparameter Tuning Effects
    • Out-of-Bag Predictions
    • Multilabel Classification
    • Cost-Sensitive Classification
    • Spatial Data
    • Functional Data
  • Extending
    • Create Custom Learners
    • Create Custom Measures
    • Create Custom Imputation Methods
    • Create Custom Filters
  • Appendix
    • Integrated Tasks
    • Integrated Learners
    • Integrated Measures
    • Integrated Filter Methods
    • mlr Publications
    • Talks, Videos and Workshops
    • mlrMBO
    • mlrCPO
    • mlrHyperopt
    • OpenML
    • Changelog
  • Reference

Release notes

  • Version 2.19
  • Version dev
  • Version 2.18
  • Version 2.17
  • Version 2.16
  • Version 2.15
  • Version 2.14
  • Version 2.13
  • Version 2.12
  • Version 2.11
  • Version 2.10
  • Version 2.9
  • Version 2.8
  • Version 2.7
  • Version 2.6
  • Version 2.5
  • Version 2.4
  • Version 2.3
  • Version 2.2
  • Version 2.1
  • Version 2.0
  • Version 1.1

Developed by Bernd Bischl, Michel Lang, Lars Kotthoff, Patrick Schratz, Julia Schiffner, Jakob Richter, Zachary Jones, Giuseppe Casalicchio, Mason Gallo.

Site built with pkgdown 1.6.1.