Fuses a base learner with an imputation method. Creates a learner object, which can be used like any other learner object. Internally uses impute before training the learner and reimpute before predicting.
makeImputeWrapper( learner, classes = list(), cols = list(), dummy.classes = character(0L), dummy.cols = character(0L), dummy.type = "factor", force.dummies = FALSE, impute.new.levels = TRUE, recode.factor.levels = TRUE )
learner | (Learner | |
---|---|
classes | (named list) |
cols | (named list) |
dummy.classes | (character) |
dummy.cols | (character) |
dummy.type | ( |
force.dummies | ( |
impute.new.levels | ( |
recode.factor.levels | ( |
Other impute:
imputations
,
impute()
,
makeImputeMethod()
,
reimpute()
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapperCaret()
,
makePreprocWrapper()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()