Fuses a base learner with an imputation method. Creates a learner object, which can be used like any other learner object. Internally uses impute before training the learner and reimpute before predicting.
makeImputeWrapper( learner, classes = list(), cols = list(), dummy.classes = character(0L), dummy.cols = character(0L), dummy.type = "factor", force.dummies = FALSE, impute.new.levels = TRUE, recode.factor.levels = TRUE )
| learner | (Learner | |
|---|---|
| classes | (named list) |
| cols | (named list) |
| dummy.classes | (character) |
| dummy.cols | (character) |
| dummy.type | ( |
| force.dummies | ( |
| impute.new.levels | ( |
| recode.factor.levels | ( |
Other impute:
imputations,
impute(),
makeImputeMethod(),
reimpute()
Other wrapper:
makeBaggingWrapper(),
makeClassificationViaRegressionWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapperCaret(),
makePreprocWrapper(),
makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()