The built-ins are:
imputeConstant(const)
for imputation using a constant value,
imputeMedian()
for imputation using the median,
imputeMode()
for imputation using the mode,
imputeMin(multiplier)
for imputing constant values shifted below the minimum
using min(x) - multiplier * diff(range(x))
,
imputeMax(multiplier)
for imputing constant values shifted above the maximum
using max(x) + multiplier * diff(range(x))
,
imputeNormal(mean, sd)
for imputation using normally
distributed random values. Mean and standard deviation will be calculated
from the data if not provided.
imputeHist(breaks, use.mids)
for imputation using random values
with probabilities calculated using table
or hist
.
imputeLearner(learner, features = NULL)
for imputations using the response
of a classification or regression learner.
imputeConstant(const) imputeMedian() imputeMean() imputeMode() imputeMin(multiplier = 1) imputeMax(multiplier = 1) imputeUniform(min = NA_real_, max = NA_real_) imputeNormal(mu = NA_real_, sd = NA_real_) imputeHist(breaks, use.mids = TRUE) imputeLearner(learner, features = NULL)
const | (any) |
---|---|
multiplier | ( |
min | ( |
max | ( |
mu | ( |
sd | ( |
breaks | ( |
use.mids | ( |
learner | (Learner | |
features | (character) |
Other impute:
impute()
,
makeImputeMethod()
,
makeImputeWrapper()
,
reimpute()