Fuses a learner with preprocessing methods provided by caret::preProcess. Before training the preprocessing will be performed and the preprocessing model will be stored. Before prediction the preprocessing model will transform the test data according to the trained model.
After being wrapped the learner will support missing values although this will only be the case if ppc.knnImpute
, ppc.bagImpute
or ppc.medianImpute
is set to TRUE
.
makePreprocWrapperCaret(learner, ...)
learner | (Learner | |
---|---|
... | (any) |
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapper()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()