Calculates numerical filter values for features. For a list of features, use listFilterMethods.
generateFilterValuesData( task, method = "randomForestSRC_importance", nselect = getTaskNFeats(task), ..., more.args = list() )
task | (Task) |
---|---|
method | (character | list) |
nselect | ( |
... | (any) |
more.args | (named list) |
(FilterValues). A list
containing:
[TaskDesc)
Task description.
(data.frame
) with columns:
Besides passing (multiple) simple filter methods you can also pass an
ensemble filter method (in a list). The ensemble method will use the simple
methods to calculate its ranking. See listFilterEnsembleMethods()
for
available ensemble methods.
Other generate_plot_data:
generateCalibrationData()
,
generateCritDifferencesData()
,
generateFeatureImportanceData()
,
generateLearningCurveData()
,
generatePartialDependenceData()
,
generateThreshVsPerfData()
,
plotFilterValues()
Other filter:
filterFeatures()
,
getFilteredFeatures()
,
listFilterEnsembleMethods()
,
listFilterMethods()
,
makeFilterEnsemble()
,
makeFilterWrapper()
,
makeFilter()
,
plotFilterValues()
# two simple filter methods fval = generateFilterValuesData(iris.task, method = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain")) # using ensemble method "E-mean" fval = generateFilterValuesData(iris.task, method = list("E-mean", c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain")))