Calculates numerical filter values for features. For a list of features, use listFilterMethods.
generateFilterValuesData( task, method = "randomForestSRC_importance", nselect = getTaskNFeats(task), ..., more.args = list() )
| task | (Task) |
|---|---|
| method | (character | list) |
| nselect | ( |
| ... | (any) |
| more.args | (named list) |
(FilterValues). A list containing:
[TaskDesc)
Task description.
(data.frame) with columns:
Besides passing (multiple) simple filter methods you can also pass an
ensemble filter method (in a list). The ensemble method will use the simple
methods to calculate its ranking. See listFilterEnsembleMethods() for
available ensemble methods.
Other generate_plot_data:
generateCalibrationData(),
generateCritDifferencesData(),
generateFeatureImportanceData(),
generateLearningCurveData(),
generatePartialDependenceData(),
generateThreshVsPerfData(),
plotFilterValues()
Other filter:
filterFeatures(),
getFilteredFeatures(),
listFilterEnsembleMethods(),
listFilterMethods(),
makeFilterEnsemble(),
makeFilterWrapper(),
makeFilter(),
plotFilterValues()
# two simple filter methods fval = generateFilterValuesData(iris.task, method = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain")) # using ensemble method "E-mean" fval = generateFilterValuesData(iris.task, method = list("E-mean", c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain")))