Optimizes the threshold of predictions based on probabilities. Works for classification and multilabel tasks. Uses BBmisc::optimizeSubInts for normal binary class problems and GenSA::GenSA for multiclass and multilabel problems.
tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())
pred | (Prediction) |
---|---|
measure | (Measure) |
task | (Task) |
model | (WrappedModel) |
nsub | ( |
control | (list) |
(list). A named list with with the following components:
th
is the optimal threshold, perf
the performance value.
Other tune:
TuneControl
,
getNestedTuneResultsOptPathDf()
,
getNestedTuneResultsX()
,
getResamplingIndices()
,
getTuneResult()
,
makeModelMultiplexerParamSet()
,
makeModelMultiplexer()
,
makeTuneControlCMAES()
,
makeTuneControlDesign()
,
makeTuneControlGenSA()
,
makeTuneControlGrid()
,
makeTuneControlIrace()
,
makeTuneControlMBO()
,
makeTuneControlRandom()
,
makeTuneWrapper()
,
tuneParams()