Set the hyperparameters of a learner object.
setHyperPars(learner, ..., par.vals = list())
| learner | (Learner | |
|---|---|
| ... | (any) |
| par.vals | (list) |
If a named (hyper)parameter can't be found for the given learner, the 3 closest (hyper)parameter names will be output in case the user mistyped.
Other learner:
LearnerProperties,
getClassWeightParam(),
getHyperPars(),
getLearnerId(),
getLearnerNote(),
getLearnerPackages(),
getLearnerParVals(),
getLearnerParamSet(),
getLearnerPredictType(),
getLearnerShortName(),
getLearnerType(),
getParamSet(),
helpLearnerParam(),
helpLearner(),
makeLearners(),
makeLearner(),
removeHyperPars(),
setId(),
setLearnerId(),
setPredictThreshold(),
setPredictType()
cl1 = makeLearner("classif.ksvm", sigma = 1) cl2 = setHyperPars(cl1, sigma = 10, par.vals = list(C = 2)) print(cl1)#> Learner classif.ksvm from package kernlab #> Type: classif #> Name: Support Vector Machines; Short name: ksvm #> Class: classif.ksvm #> Properties: twoclass,multiclass,numerics,factors,prob,class.weights #> Predict-Type: response #> Hyperparameters: fit=FALSE,sigma=1 #>#> Learner classif.ksvm from package kernlab #> Type: classif #> Name: Support Vector Machines; Short name: ksvm #> Class: classif.ksvm #> Properties: twoclass,multiclass,numerics,factors,prob,class.weights #> Predict-Type: response #> Hyperparameters: fit=FALSE,sigma=10,C=2 #>