Set the hyperparameters of a learner object.
setHyperPars(learner, ..., par.vals = list())
learner | (Learner | |
---|---|
... | (any) |
par.vals | (list) |
If a named (hyper)parameter can't be found for the given learner, the 3 closest (hyper)parameter names will be output in case the user mistyped.
Other learner:
LearnerProperties
,
getClassWeightParam()
,
getHyperPars()
,
getLearnerId()
,
getLearnerNote()
,
getLearnerPackages()
,
getLearnerParVals()
,
getLearnerParamSet()
,
getLearnerPredictType()
,
getLearnerShortName()
,
getLearnerType()
,
getParamSet()
,
helpLearnerParam()
,
helpLearner()
,
makeLearners()
,
makeLearner()
,
removeHyperPars()
,
setId()
,
setLearnerId()
,
setPredictThreshold()
,
setPredictType()
cl1 = makeLearner("classif.ksvm", sigma = 1) cl2 = setHyperPars(cl1, sigma = 10, par.vals = list(C = 2)) print(cl1)#> Learner classif.ksvm from package kernlab #> Type: classif #> Name: Support Vector Machines; Short name: ksvm #> Class: classif.ksvm #> Properties: twoclass,multiclass,numerics,factors,prob,class.weights #> Predict-Type: response #> Hyperparameters: fit=FALSE,sigma=1 #>#> Learner classif.ksvm from package kernlab #> Type: classif #> Name: Support Vector Machines; Short name: ksvm #> Class: classif.ksvm #> Properties: twoclass,multiclass,numerics,factors,prob,class.weights #> Predict-Type: response #> Hyperparameters: fit=FALSE,sigma=10,C=2 #>