R/makeFunctionalData.R
makeFunctionalData.Rd
To work with functional features, those features need to be
stored as a matrix
column in the data.frame, so mlr
can automatically
recognize them as functional features.
This function allows for an easy conversion from a data.frame with numeric columns
to the required format. If the data already contains matrix columns, they are left as-is
if not specified otherwise in fd.features
. See Examples
for the structure
of the generated output.
makeFunctionalData(data, fd.features = NULL, exclude.cols = NULL)
data | (data.frame) |
---|---|
fd.features | (list) |
exclude.cols | (character | integer) |
(data.frame).
# data.frame where columns 1:6 and 8:10 belong to a functional feature d1 = data.frame(matrix(rnorm(100), nrow = 10), "target" = seq_len(10)) # Transform to functional data d2 = makeFunctionalData(d1, fd.features = list("fd1" = 1:6, "fd2" = 8:10)) # Create a regression task makeRegrTask(data = d2, target = "target")#> Supervised task: d2 #> Type: regr #> Target: target #> Observations: 10 #> Features: #> numerics factors ordered functionals #> 1 0 0 2 #> Missings: FALSE #> Has weights: FALSE #> Has blocking: FALSE #> Has coordinates: FALSE