R/getCaretParamSet.R
getCaretParamSet.Rd
Constructs a grid of tuning parameters from a learner of the caret
R-package. These values are then converted into a list of non-tunable
parameters (par.vals
) and a tunable
ParamHelpers::ParamSet (par.set
), which can be used by
tuneParams for tuning the learner. Numerical parameters will
either be specified by their lower and upper bounds or they will be
discretized into specific values.
getCaretParamSet(learner, length = 3L, task, discretize = TRUE)
learner | ( |
---|---|
length | ( |
task | (Task) |
discretize | ( |
(list(2)
). A list of parameters:
par.vals
contains a list of all constant tuning parameters
par.set
is a ParamHelpers::ParamSet, containing all the configurable
tuning parameters
if (requireNamespace("caret") && requireNamespace("mlbench")) { library(caret) classifTask = makeClassifTask(data = iris, target = "Species") # (1) classification (random forest) with discretized parameters getCaretParamSet("rf", length = 9L, task = classifTask, discretize = TRUE) # (2) regression (gradient boosting machine) without discretized parameters library(mlbench) data(BostonHousing) regrTask = makeRegrTask(data = BostonHousing, target = "medv") getCaretParamSet("gbm", length = 9L, task = regrTask, discretize = FALSE) }#>#>#>#> #>#>#> #>#> note: only 3 unique complexity parameters in default grid. Truncating the grid to 3 . #>#> $par.vals #> $par.vals$shrinkage #> [1] 0.1 #> #> $par.vals$n.minobsinnode #> [1] 10 #> #> #> $par.set #> Type len Def Constr Req Tunable Trafo #> interaction.depth integer - - 1 to 9 - TRUE - #> n.trees numeric - - 50 to 450 - TRUE - #>